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Objectives
• Introduce the concepts of 

– Residence Time Distribution (RTD) 
– mean residence time
– mean outlet concentration
– mean conversion

• Apply RTD to calculate the concentration and conversion in 
the stream exiting a reactor.

• Metcalfe: Chapter 6
• Schmidt: Chapter 8
• Fogler: Chapters 13 and 14

Sources for non-ideal reactors
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Motivation
PFR (completely unmixed) and CSTR (completely mixed) 

reactors are never achieved in practice, however, the behaviour 
of real reactors can be modelled as a combination of both.

Interestingly: 
• a PFR can be modelled as an infinite number of CSTR in series
• a CSTR can be modelled as a PFR with infinite recycle

Any real reactor can be conceptualised as a collection of small 
elements each one with an associated residence time.  

The concentration in each element is a function of its residence 
time.
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RTD (Residence Time Distribution)
RTD (Residence Time Distribution) is the probability of an 

element of fluid residing in the reactor for a time t.

RTDs, denoted E(t),  can be obtained by injecting a tracer at the 
input stream and then monitoring its concentration in the 
outlet.
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RTD for an ideal CSTR
Introduce N moles 
of tracer at t = 0:

Non-SS CSTR MB:
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RTD for an ideal PFR
Introduce a pulse of N moles of tracer at t = 0.

where 
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RTD for a non-ideal reactor

E(t) dt: fraction of effluent 
with a residence time
between t and (t+dt)
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Mean residence time ( t )
t is the time-weighted average over all residence times:

for ideal reactors:

as expected!
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δ(t-τ) is zero for all times except t = τ
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Average values
In fact, the average value of any variable f(t) is:

The mean outlet concentration of reactant:

The mean conversion in a non-ideal reactor:
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Mean conversion ( X )
If we treat each fluid element in the reactor as a well-mixed batch 

reactor (for a first order reaction A  B):

for ideal reactors:

again, as expected!
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δ(t-τ) is zero for all times except t = τ
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Example: C(t) curve for tracers (Example 13-1 in Fogler)

A tracer is injected as a pulse to a reactor and the effluent 
concentration is measured:
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Example: E(t) curve for tracers

(the integral is evaluated numerically using Simpson´s rule)
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Example: fraction of material with a given residence time
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What is the fraction of the material that has spent between 3 and 7 
minutes in the reactor?
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(Example: numerical integration)
For N+1 points (N even):
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Example: mean residence time for tracers
(tmean is the mean residence time; it is also 

evaluated using Simpson´s rule)
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t [min] E(t) [min-1] t*E(t)
0 0,000 0,00
1 0,020 0,02
2 0,100 0,20
3 0,160 0,48
4 0,200 0,80
5 0,160 0,80
6 0,120 0,72
7 0,080 0,56
8 0,060 0,48
9 0,044 0,40

10 0,030 0,30
12 0,012 0,14
14 0,000 0,00
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Laminar flow tubular reactors
If a reactor has mixed flow, E(t) will be between the limits of a 

perfectly mixed (CSTR) and unmixed (PFR) reactors.

In a PFR: 

• if u is low  Re < 2100  laminar flow (no radial or axial mixing)
• if u is high  Re > 2100  turbulent flow (axial dispersion)

For laminar flow, the velocity profile is: 
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Laminar flow tubular reactors

So, the RTD for a laminar flow tubular reactor is: 
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(complete derivation 
@ Fogler, 3rd ed., 
Section 13.4.3)
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Laminar flow tubular reactors: average conversion

Note that the minimum time that a fraction of fluid spends in the 
reactor (tmin) is:

So,  
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Laminar flow tubular reactors: average conversion

Since

and, comparing the conversion of a laminar flow PFR vs a PFR for 
1st and 2nd order kinetics:

… PFR assumption are a good approximation!
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Non-ideal reactors
We treat each fluid element in the reactor as a well-mixed batch 

reactor.
For a batch reactor (with a 1st order, irreversible reaction A  B):

design equation: kt
AAAj

A eCCkCr
dt

dC  0

soln


CA  CA t E t dt
0

 CA 0 ekt E t dt
0
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RTD
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Non-ideal reactors: example (1) (6.2 Metcalfe)

 tE

Input data: 
• first order, liquid phase reaction   A  B,   r = k CA,   k = 0.307 s–1

• E(t) vs. t 

t [s] 0 2 4 6 8 10 12 14 

E [s-1] 0.00 0.04 0.15 0.15 0.10 0.05 0.01 0.00
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Non-ideal reactors: 
example (2) (6.2 Metcalfe)
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Non-ideal reactors: example (3) (6.2 Metcalfe)

Solution:

Compare with CSTR and PFR:

• CSTR

• PFR
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Some RTDs for non-ideal reactors (Fig 8-1, Schmidt)
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